Synthesis, properties and crystal structures of pentamethylcyclopentadienyl- and cyclopentadienyl-ruthenium(II) diphenylphosphine complexes

Román Torres Lubián, M. Angeles Paz-Sandoval *
Centro de Incestigación y Estudios Aranzados del I.P.N. Depurtamento de Quimica, Apartaleo Postal 14-740, 07000-México. D.F.. México

Received 7 May 1996: revised 19 August 1996

Abstract

 3. $\mathrm{R}=\mathrm{Me} 4$) and prochiral $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)_{2} \mathrm{Cl}(6)$ are described. Compound 6 has been available from reaction of PHFh_{2} and several starting materials. The X -ray structure comparison between 3,4 and 6 allowed us to compare the influence of the phosphine, Cp and $\mathrm{CP}{ }^{*}$ ligands in these half-sandwich compounds. In addition, a strucnural invesrigation was carried our on Cp " Ru (NBD)Cl (7).

Keywords: Ruthenium: Cyclopentadienyls: Phosphines

1. Introduction

We have been investigating the chemistry of the secondary phosphine PHPh_{2} with pentadienyl manganese [1] and ruthenium [2] compounds. Our interest arises from the fact that PHPh_{2} offers the possibility of further functionalization once it is coordinated. Despite the vast literature describing tertiary phosphine coordination to half-sandwich cyclopentadienyl (Cp) [3-5] and pentamethylcyclopentadienyl ($\mathrm{Cp}{ }^{*}$) $[5,6]$ ruthenium(II) compounds, reactions of secondary phosphines with these compounds are scarce in the literature [7-9]. Compounds $\mathrm{CpRu}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{X}(\mathrm{X}=\mathrm{H}, \mathrm{Cl})$ have barely been mentioned in the literature [7], and neither preparative details nor characterization have to date been reported. Synthesis of the disubstituted $\mathrm{CpRu}\left(\mathrm{PHPh}_{2}\right)_{2} \mathrm{Cl}$ has been described by Singleton and coworkers [8] and [(p-cymene)Ru(acac) $\left.\left(\mathrm{PHPh}_{2}\right)\right] \mathrm{BF}_{4}$ by Oro and coworkers [9].

As the first part of our studies we wish to report on the synthesis, properties, characterization and singlecrystal structure determination of chiral ($\boldsymbol{\eta}^{5}$ $\left.\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(\mathrm{R}=\mathrm{H} \mathrm{3}, \mathrm{R}=\mathrm{Me} 4)$ and prochiral $\mathrm{Cp}{ }^{*} \mathrm{Ru}^{(}\left(\mathrm{PHPh}_{2}\right)_{2} \mathrm{Cl}$ (6). In addition, a struc-

[^0]tural investigation was carried out on $\mathrm{Cp}^{*} \operatorname{Ru}(N B D) C l$ (7). The synthesis of this η^{4}-diene complex has previously been reported almost simultaneously by Moro-Oka and coworkers [10] and Bercaw and coworkers [11]. An improved synthetic method for 7 has been reported in 86% and 94% by Conroy-Lewis and Simpson [12] and Fagan et al. [13] using $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{4}\right.$ as starting materials, tespectively.

2. Results and discussian

2.I. Syntheses

Replacement of one triphenylphosphine in (η^{5}. $\left.\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathbf{R u}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathrm{R}=\mathrm{H} \mathbf{1}, \mathrm{R}=\mathrm{Me} 2)$ occurred under PHPh_{2} addition, in stoichiometric $1: 2$ and 1:1.2 ratios respectively, to give the chiral compounds (η^{5} $\left.\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(\mathrm{R}=\mathrm{H} \mathrm{3}, \mathrm{R}=\mathrm{Me} \mathrm{4})$ (Scheme 1).

The half-sandwich compounds 3 and 4 were obtained as orange-red crystalline solids in 81% and 56% yield respectively. Compound 4 was obtained in low yield, owing to the formation of the disubstituted compound 6 (vide infra), even when the synthesis was carried out with less than two equivalents of $\mathrm{PHPh}_{2} .4$ cannot be easily separated from 6 (see Section 3.3). Structures 3

$R=H$	1
$R=M e$	2

3
4

5
6

Scheme 1.
and 4 have been established by ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ NMR (Table 1),
${ }^{13} \mathrm{C}$ NMR (Table 2), mass spectrometry and singlecrystal X-ray diffraction studies (Figs. 1 and 2) (Section 2.2).

The prochiral yellow species 5 was isolated by Singleton and coworkers [8] from a reaction between CpRur(COD)Cl and PHPh_{1} in acetone at room temperature for 60 min in 74% yield. In this work, the melting point found for 5 in a seaied capillary was $168-171^{\circ} \mathrm{C}$ which differs from that previously reported (133$134^{\circ} \mathrm{C}$) [8]. Compound 5 was also prepared from 1 or 3 , requiring ten or five equivalents of PHPh_{2} respectively in toluene at $100^{\circ} \mathrm{C}$ for 5.5 h . Disubstituted compound 5 , mixed with 3, was obtained in a $9: 1$ ratio as observed from ${ }^{31}$ P NMR. Purification of these compounds by recrystallization or chromatography is very laborious and difficult owing to their similar solubilities.

The synthesis of 6 was carried out using PHPh_{2} and different starting materials, such as $\mathrm{Cp}^{+} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ (2). $\mathrm{Cp}{ }^{-K u}(\mathrm{NBD}) \mathrm{Cl}$ (7), $\mathrm{Cp}^{+} \mathrm{Ku}(\mathrm{COD}) \mathrm{Cl}(8)$, $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{+}\right.$(9), $\left[\mathrm{Cp}{ }^{*} \mathrm{RuCl}_{2}\right]_{n}$ (10) and
$\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$ (11) (Scheme 2) (see Section 3.4). 8 was the most useful starting material, followed by 9 ; these allowed the isolation of 6 in 90% and 75% yields respectively. Characterization of 6 is described in Tables 1 and 2; its identity was confirmed by an X-ray diffraction study (Fig. 3) (Section 2.2).

It is interesting to note that when 7 is used as starting material a very poor yield (1.5%) is obtained. The reason for this dramatic change between 7 and 8 could be explained from the thermodynamic studics performed on these species which shows COD to be less strongly bound to ruthenium than NBD. The labile nature of the COD ligand in 8 was used to gain access into the thermochemistry of ligand substitution for monodentate tertiary arsine, phosphine and phosphite ligands [6]. Indeed, reaction between complex 7 and two equivalents of PPh_{3} (in spite of its estimated exothermic value, $\Delta H_{\mathrm{rxn}}=-15.2{\mathrm{kcal} \mathrm{mol}^{-1}}^{-1}$ did not proceed quantitatively under calorimetric conditions $\left(30^{\circ} \mathrm{C}\right)$, while the reaction proceeded to completion under fairly mild conditions when compound 8 ($\Delta H_{\mathrm{r} \times \mathrm{n}}=$

Table :
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for compounds 3-6 ${ }^{3}$

Compound	${ }^{31} \mathrm{P} \delta$	${ }^{1} \mathrm{H} \delta$		
		Cp or Cp ${ }^{\text {a }}$	Phenyl groups	P-H
3	$\begin{aligned} & 47.07(\mathrm{~d}, 46.7), 41.02(\mathrm{~d}, 46.7) \\ & J_{P H}=360 \end{aligned}$	4.34 (s)	$6.80-7.40$ (m,25H)	6.27 (dd) $J_{\mathrm{PH}}=359.5{ }^{3} /{ }_{\text {PH }}=2.44$
4	$\begin{aligned} & 45.35(\mathrm{~d}, 42.9), 35.98(\mathrm{~d}, 42.9) \\ & d_{\mathrm{FH}}=361.9 \end{aligned}$	$1.26(t),{ }^{7} J^{\text {PH }}=1.65$	6.86-7.58 (m,25H)	$5.86(\mathrm{~s}, 1 \mathrm{H})$
5	$\begin{aligned} & 35.50(\mathrm{~s}) . J_{\mathrm{PH}}=355 \\ & 37.31(\mathrm{~s})_{\mathrm{b}} \end{aligned}$	4.51 (s)	7.18-7.50 (m. 20 H)	6,49 (d). $J_{\text {PH }}=352.4$
		4.52 (s)	$\begin{aligned} & 7.24(\mathrm{~m} .4 \mathrm{H}): 7.30(\mathrm{~m} .4 \mathrm{H}) \\ & 7.36(\mathrm{~m}, 2 \mathrm{H}) ; 7.51(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	6.40 (d), $J_{\text {PH }}=359.0$
	35.71 (5) ${ }^{\text {c }}$	4.42 (s)	$\begin{aligned} & 7.81(\mathrm{~m}, 1 \mathrm{H}) ; 8.09(\mathrm{~m}, 1 \mathrm{H}) \\ & 7.46-7.58(\mathrm{~m}) ; 7.32-7.40(\mathrm{~m}) \\ & 6.97-7.12(\mathrm{~m}) \end{aligned}$	6.52 (d), $J^{\text {PH }}=358.3$
6	37.17 (s), $J_{\mathrm{PH}}=350.6$	$\begin{aligned} & 1.35(\mathrm{t}) .{ }^{.} J_{P H}=1.45 \\ & 1.41(\mathrm{t}) . P_{J_{P 11}}=1.98 \end{aligned}$	$\begin{aligned} & 7.03-7.55(\mathrm{~m}, 20 \mathrm{H}) \\ & 7.54-7.72\left(\mathrm{~m}, \mathrm{H}_{v}\right) \\ & 7.04-7.12\left(\mathrm{~m}, \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}}\right) \\ & 6.82-6.90\left(\mathrm{~m}, \mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{p}}\right) \end{aligned}$	$\begin{aligned} & 6.34(\mathrm{~d}) J_{\mathrm{PH}}=351.0 \\ & 6.54(\mathrm{~d}) J_{\mathrm{PH}}=351.0 \end{aligned}$

[^1]Tahle ?
${ }^{13} \mathrm{C}$ NMR data for compounds 3-6;

Compound	$\delta\left(C_{p}\right.$ or $\left.C_{p}{ }^{\prime}\right)$	Phenyl groups			
		C_{1}	$\mathrm{C}_{\text {o }}$	C_{m}	C_{p}
3	$80.1(\mathrm{t}, 2.2 \mathrm{~Hz})$	135.1 (m)	132.5 (d.8.8)	127.7 (d,9.9)	129.2 (d.2.2)
		135.7 (s.br)	132.9 (d.11)	128.0 (J.10)	129.3 (d.2.2)
		136.5 (d.41.9)	$133.7\left(\begin{array}{l}1,9.9)\end{array}\right.$	128.4 (d.8.8)	129.4 (s)
4	89.0 (s)	133.2 (s,br)	132.5 (d.10)	127.3 (d.8.8)	138.7 (s)
	9.7(s)	135.2 (d,35.3)	133.9 (d.8.8)	127.4 (d.8.8)	129.4 (s)
		135.3 (d.35.3)	${ }^{\text {b }}$	128.0 (d.7.7)	- ${ }^{6}$
5	79.7 (t. 2.2 Hz)	$134.6(\mathrm{t} .24$)	132.1(1.5.5)	128.0(1.4.4)	129.1(s)
		$135.7(\mathrm{t} .=23)$	133.3 (t.5.5)	128.3(1.4.4)	129.5(s)
	$80.5{ }^{\text {c }}$	138.1	132.0	128.7	129.9
		134.2	132.2	129.1	130.3
6	89.0fs)	$133.9\left(\mathrm{t}_{\mathrm{t}} \approx 2 \mathrm{t}\right)$	131.9 (L4.4)	127.6 (, 4.4 .4)	128.4 (s)
	9.4 (s)	$135.5\left(\mathrm{t}_{1}=21\right)$	$13.1 .1(1,4.4)$	128.0 (t.4.4)	129.3 (s)
	89.3 (s) ${ }^{\text {a }}$	134.8 (1.21)	$132.4(1,4.4)$	127.8 (t.4.4)	128.6 (s)
	9.7 (s)	$136.2(1,21)$	$134.7(t, 5.5)$	128.2 (t.5.5)	129.5 (s)

${ }^{2} \mathrm{CDCl}_{3}$: ${ }^{n}$ not observed: ${ }^{\text {" }} \mathrm{C}_{6} \mathrm{D}_{6}$: ${ }^{4}$ acetone- $d_{6}[8]$.
$-18 \mathrm{kcal} \mathrm{mol}^{-1}$) was used. According to thermodynamic calculations, compound 8, in the presence of NBD, should give compound 7 via an exothermic process ($3.1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$) [6]. These results suggest that the dominant factor behind the inability to observe transformation from 7 to 2 or 6 , in the presence of PPh_{3} or PHPh_{2} respectively, must be a kinetic one. Other reported reactions with preferential binding of NBD over COD have been observed in the $\mathrm{Mo}(\mathrm{CO})_{4}$ (diene) [14] and CpCo (diene) $[15]$ species.

However, the NBD ligand in 7 could be replaced by an excess of tertiary phosphines or t -burylisonitrile, giving compounds ($\eta^{5}-\mathrm{C}_{6} \mathrm{Me}_{5}$) $\mathrm{Ru}(\mathrm{PR})_{2} \mathrm{Cl}\left(\mathrm{R}=\mathrm{Me}_{3}\right.$, $\mathrm{Me}_{2} \mathrm{Ph}, \mathrm{MePh}_{2}$) [16] or $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}\left(\mathrm{NC}^{\prime} \mathrm{Bu}\right)_{2} \mathrm{Cl}[12]$ respecively. Alternatively, the synthesis of $\mathbf{2}$ has been described [16] using 10 and PPh_{3} in the presence of a catalytic amount of NBD. However, using COD. we observed that formation of 11 competes in this reaction, producing 2 in low yield. 2 has also been reported to be synthesized by a method similar to the published proce-

Fig. I. An ortep plot of the molecular structure of $\mathbf{3}$ with atomic numbering scheme.

Fig. 2. An ORTEP plot of the molecular structure of 4 with atomic numbering scheme.

6

10

11

Scheme 2.

Fig. 3. An ORTEP plot of the molecuiar structure of 6 wilh atomic numbering scheme.
dure [16] but without NBD [17]. Some of the resulting compounds when 7 was treated with AgBF_{4} are the η^{6}-6-methylfulvene complex [Cp*Ru($\boldsymbol{\eta}^{6}$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CHMe}^{2}\right] \mathrm{BF}_{4}$ [18] or [$\left.\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{NBD})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \mathrm{BF}_{4}$ [10], depending on the solvent used. The latter afforded $\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{NBD}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right] B F_{4}$ quantitatively in the presence of one equivalent of PPh_{3} [10]. Reduction of 7 with lithium powder in DME gave the anionic $\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}(\mathrm{NBD})\right] L i(\mathrm{DME})$ [13]. We were able to obtain single-crystals of 7. and here we will describe its structure (see Fig. 4) (Section 2.2).

The formation of $\mathrm{Cp}{ }^{*}$ derivalives 2 and 4 is faster than that of the corresponding $C p$ analogues 1 and 3 . This difference is attributed to an increase of electron density, as well as steric shielding, at the metal center [3,19]. The difference in reactivity between the two Cp and $\mathrm{Cp}{ }^{\text {' }}$ series opens up a wide range of chemical reactions. Some examples have been described in the literature $[4,12,19]$. The disubstituted compounds 5 and 6 are respectively more reactive than the corresponding mixed species 3 and 4 owing to the presence of two PH functions. In particuiar, the chemistry of 6 has been studied, and it tums out to be exceptionally versatile in the preparation of new $\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Cp}^{*} \mathrm{Ru}(\mathrm{IV})$ compounds. This chemistry will be described in future contributions [20].

2.2. Molecular structures

Single-crystal X-ray structure determinations were carried out for compounds 3, 4, 6 and 7. The molecular
geometries of these compounds are depicted in Figs. $1-4$ respectively. Atom positional parameters are given in Tables 3-6, selected bond angles and bond distances are listed in Tables 7 and 8 respectively for 3,4 and 6.

2.2.1. Molecules 3, 4, and 6

These molecules have a piano-stool structure that contains a Cp or $\mathrm{Cp}{ }^{*}$ ring. a chlorine ligand and two

Fig. 4. An orrite plot of the molecular suructure of 7 with akonic numbering scheme.
phosphines bonded to ruthenium in a distorted octahedral geometry. Bond angles $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Pl}, \mathrm{Cl}-\mathrm{Ru}-\mathrm{P} 2$ and P1-Ru-P2 for compounds 3 (89.27(5), 88.43(5), $\left.92.38(5)^{\circ}\right), 4\left(93.13(8), 84.25(8), 91.33(8)^{\circ}\right)$ and 6 ($\left.91.20(4), 84.71(5), 90.67(5)^{\circ}\right)$ reflect the fact that octathedral distortion decreases in the following order $3<6$ <4. The respective angles for 1 (89.05(3), $90.41(4)$, 103.99(4) ${ }^{\circ}$ [21], $\mathrm{CpRu}\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Cl}(12)$ (89.7(2), $90.1(2)$, $\left.94.7(2)^{\circ}\right)$ [21], $\mathrm{CpRu}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}(13)$ ($90.43(3), 90.50(3)$, $\left.94.71(3)^{\circ}\right)$ [4], ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{7}$)Ru($\left.\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (14) (93.93(6), 87.17(6), 97.25(5) ${ }^{\circ}$ [22], $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{7}\right) \mathrm{Ru}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}$ (15) $\left(92.88(6), \quad 88.14(5), \quad 97.93(5)^{\circ}\right) \quad[22], \quad\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{7}\right) \mathrm{Ru}\left(\mathrm{PEt}_{3}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ (16) (93.38(2), 87.94(2),
$\left.98.70(2)^{\circ}\right)$ [22], ($\left.\eta^{5} \mathrm{C}_{5} \mathrm{H}_{7}\right) \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ (17) (91.73(3), $\left.96.70(3), 93.34(3)^{\circ}\right)$ [2] and $\left(\eta^{5}-2,4-\right.$ $\left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{7}\right) \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$ (18) (85.81(2), $\left.85.92(2), 92.45(2)^{\circ}\right)$ [2] allowed us to compare the influence of the phosphine ligands in these half-sandwich compounds. Analyzing angles $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Pl}$ and $\mathrm{Cl}-$ Ru-P2 in disubstituted species 1,12 and 13 for Cp derivatives, there is no significant difference in their bond angles. In contrast, $\mathrm{Cp}{ }^{*}$ derivative 6 presents an important variation (ca. 6.5°), such as that observed in disubstituted complexes with acyclic pentadienyl ligands 14 (ca. 6.8°) and 15 (ca. 4.7°); this reflects the higher steric congestion on CP^{*} and η^{5}-pentadienyl

Table 3
Atom positional parameters for compound 3

Atom	x	y	=	$0_{\text {ci }}$	Occ
Ru\{1)	0.18489 (7)	$0.20657(4)$	$0.07909(4)$	0.0383	!.0000
P(1)	$0.3387(2)$	0.2766 (1)	$0.0421(1)$	0.0409	1.0000
P(2)	$0.3309(2)$	$0.1764(1)$	$0.1881(1)$	0.0396	1.0000
Cl(1)	$0.1264(2)$	$0.3092(1)$	0.1516 (1)	0.0556	1.0000
C(1)	0.0596(8)	0.1821 (6)	-0.0353(5)	0.0448	1.0000
C(2)	-0.0206(8)	$0.2019(6)$	$0.0105(5)$	0.0512	1.0000
C(3)	-0.0009(9)	$0.1472(5)$	$0.0696(5)$	0.0515	1.0000
C(4)	0.0939(9)	$0.0956(5)$	$0.0573(5)$	0.0502	1.0000
C(5)	$0.1360(9)$	$0.1177(5)$	$-0.0048(6)$	0.0492	1.0000
C(6)	$0.057(1)$	0.2193 (7)	-0.1090(5)	0.0695	1.0000
C(7)	-0.1208(9)	0.2627(6)	$-0.0034(6)$	0.0690	1.0000
C(8)	-0,078(1)	$0.1428(7)$	$0.1243(6)$	0.0770	1.0000
C(9)	$0.125(1)$	0.0244(5)	0.0967(6)	0.0654	1.0000
C(10)	$0.215(1)$	$0.0729(6)$	-0.0444(6)	0.0549	1.0000
C(11)	0.2818(9)	$0.3651(5)$	-0.0057(5)	0.0406	1.0000
C(12)	$0.1565(9)$	0.3867(6)	$-0.0165(5)$	0.0557	1.0000
C(13)	$0.113(1)$	$0.4521(7)$	-0.0523(6)	0.0728	1.0000
C(14)	$0.195(1)$	$0.4977(6)$	-0.0776(6)	0.0699	1.0100
C(15)	0.323 (1)	$0.4765(6)$	-0.0665(6)	0.0719	1.0000
C(16)	0.366 (1)	$0.4109(6)$	-0.0309(5)	0.0579	1.0000
C(17)	ก417(1)	$0.229616)$	-0.0243(6)	0.0525	1.0000
C(18)	0.393 (1)	0.2492 (6)	-0.0993(6)	0.0734	1.00\%
C(19)	$0.455(1)$	$0.2114(7)$	-0.1459(6)	0.0600	1.0010
C(20)	0.532(2)	$0.159(1)$	-0.128(1)	0.0940	1.6000
C(21)	$0.563(1)$	$0.1346(7)$	-0.054(1)	0.0890	1.0000
C(22)	U.504(1)	$0.1703(6)$	-0.0016(7)	0.0748	1.1\%60
C(23)	0.4821 (8)	$0.3130(4)$	$0.1107(4)$	0.0376	1.0000
C(24)	$0.6091(9)$	0.3003(6)	$0.1094(5)$	0.0527	1.0000
C25)	0.7102(9)	$0.3310(6)$	$0.1629(6)$	0.0579	1.0000
C(26)	0.685(1)	0.3742(6)	$0.2184(6)$	0.0534	1.0000
C(27)	0.560 (1)	0.3884(5)	$0.2199(6)$	0.0597	1.0000
C(28)	0.4599 (9)	$0.3559(5)$	$0.1665(5)$	0.0492	1.0000
C(29)	0.4825(9)	$0.1294(5)$	$0.1908(5)$	0.0424	1.000
C(30)	$0.598(1)$	$0.1518(7)$	$0.2397(6)$	0.0633	1.0000
C(31)	0.712(1)	$0.1161(8)$	0.2440 (6)	0.0723	1.0000
C(32)	$0.713(1)$	$0.0554(7)$	$0.2033(8)$	0.0701	1.0000
C(33)	$0.606(1)$	$0.0292(6)$	$0.1574(9)$	0.0814	1.0000
C(34)	$0.491(1)$	$0.0676(6)$	$0.1512(7)$	0.0715	1.0000
c(35)	0.2741 (8)	$0.1241(5)$	$0.2580(4)$	0.0391	1.0009)
C(36)	0.316 (1)	$0.0538(5)$	$0.2827(5)$	0.0586	1.0000
C(37)	$0.268(1)$	0.01706)	$0.3333(6)$	0.0601	1.0000
C(38)	0.180 Al)	0.0492(6)	$0.3641(6)$	0.0642	1.0000
C(39)	$0.138(1)$	$0.1192(7)$	$0.3422(6)$	0.0661	1.0000
C(40)	$0.183(1)$	$0.1567(5)$	0.2888(6)	0.0594	1.0000

Table 4
Atom positional parameters for compound 4

Atom	x	y	z	$U_{\text {cq }}$	Occ
Ru(1)	$0.11606(4)$	0.23350(3)	$0.93145(3)$	0.0426	1.0000
$\mathrm{Cl}(1)$	0.1326 (1)	$0.2301(1)$	0.79413 (8)	0.0539	1.0000
(1 1)	$0.2699(1)$	$0.1355(1)$	$0.94962(8)$	00381	1.0000
P(2)	$0.2293(1)$	$0.3609(1)$	0.93917 (8)	0.0377	1.0000
C(1)	-0.0489(7)	$0.1635(7)$	0.9275 (6)	0.0766	1.0000
C(2)	-0.0667(5)	0.2611 (8)	$0.9203(6)$	0.0750	1.0000
C(3)	-0.0198(7)	$0.3025(6)$	$0.9874(6)$	0.0753	1.0000
C(4)	$0.0295(6)$	$0.2331(6)$	$1.0361(4)$	0.0718	1.0000
C(5)	$0.0087(8)$	$0.1482(6)$	$0.9988(6)$	0.0749	1.0000
C(11)	$0.2634(6)$	0.0286(4)	0.8925(3)	0.0390	1.0000
C(12)	$0.1593(6)$	-0.0096(5)	0.8686(4)	0.0573	1.0010
C(13)	$0.1518(7)$	-0.0926(5)	0.8273(4)	0.0585	1.0000
C(14)	$0.2480(9)$	-0.1355(4)	$0.8102(4)$	0.0554	1.0000
C(15)	$0.3516(7)$	-0.0989(5)	0.83494)	0.0587	1.00000
C(16)	0.3591 (5)	$0.0176(4)$	$0.8767(3)$	0.0478	1.0000
C(17)	$0.2917(5)$	$0.0923(4)$	1.0484(3)	0.039	1.0000
C(18)	$0.3011(5)$	-0.0002(4)	$1.0663(3)$	0.0453	1.0000
C(19)	$0.3115(6)$	-0.0279(5)	1.14264)	0.0582	1.0000
C(20)	$0.3113(6)$	$0.0347(6)$	1.200849	0.0576	1.0000
C(21)	0.3045 (7)	$0.1271(6)$	$1.1834(4)$	0.0637	1.0000
C(22)	0.2940(6)	$0.1538(4)$	1.1083(4)	0.0584	1.0000
C(23)	$0.4087(5)$	$0.1805(4)$	0.9307(4)	0.0390	1.0000
C(24)	$0.4984(6)$	$0.1920(4)$	0.9860 (4)	0.0540	1.0000
C(25)	$0.5966(6)$	$0.2348(6)$	0.9678(6)	0.0738	1.0000
C(26)	$0.6068(6)$	$0.2654(5)$	0.8957(7)	0.0766	1.0000
C(27)	$0.5204(7)$	0.252159	0.8389(5)	0.0689	1.0100
C(28)	0.4223 (5)	$0.2692(4)$	$0.8558(4)$	0.0538	1.0000
C(29)	$0.1716(5)$	0.4686 (4)	0.8976 (3)	0.0371	1.0000
C(30)	$0.0792(5)$	$0.4683(4)$	0.8420(4)	0.0503	1.0000
C(31)	$0.0433(5)$	$0.5491(5)$	0.8052(4)	0.0563	1.0000
C(32)	$0.0978(6)$	$0.6305(5)$	0.8228(4)	0.0528	1.0000
C(33)	0.18766)	0.6324(4)	0.8780(4)	0.0561	1.0000
C(34)	$0.2242(5)$	0.5520(5)	0.9160(3)	0.0487	1.0000
C(35)	$0.2965(5)$	$0.3983(4)$	1.03173 (3)	0.0359	1.0000
C(36)	$0.4124(6)$	$0.4064(4)$	$1.0440(3)$	0.0504	1.0000
C(37)	$0.4635(6)$	0.4308(6)	1.1160 (5)	0.0719	1.0000
C(38)	$0.4004(8)$	$0.4473(6)$	1.1751(4)	0.0734	1.0000
C(39)	$0.2857(7)$	$0.4397(5)$	1.1638(4)	0.06554	1.0000
C(40)	0.2336(5)	0.4149(5)	1.0922(4)	0.0564	1.0000

species compared with the Cp analogue. Also, variations in the corresponding bond angles $\mathrm{Cl}-\mathrm{Ru}-\mathrm{Pl}, \mathrm{Cl}-$ Ru-P2 in 3 (ca. 0.84°) and 4 (ca. 8.9°) clearly reflect the influence of the bulky Cp^{*} in 4 . Interestingly, the small difference found in 3 is also observed in the 2,4 -dimethylpentadienyl complex 18 (ca. -0.11°), which achicves the most symmerric piano-stool structure for the acyclic species; this contrasts with the higher angle values found in disubstituted pentadienyl complexes 14-15 and also the mixed phosphine compound 16 (vide supra). These results reflect the similarity between the PHPL_{2} and PPH_{3} in 3 and 18, even though their cone angles are different $\left(\mathrm{PHPh}_{2}\left(128^{\circ}\right)\right.$, PPh_{3} (145 ${ }^{\circ}$)) [23]. Furthermore, comparison between $\mathrm{Cp}{ }^{*}$ species 4 (ca. 8.9°) and 6 (ca. 6.5°) reinforces the similarity between PHPh_{2} and PPh_{3}, the highest steric requirements being for the mixed species.

The $\mathrm{Ru}-\mathrm{Cl}$ bond length in $3,2.434(2) \AA$, is signifi-
cantly shorter than the corresponding distances in 6 , $2.454(1) \AA$, and $4,2.462(2) \AA$. According to analogous species, which include cyclic 1 (2.453(2) A), 12 ($2.451(6) \AA$), 13 ($2.4502(8) \AA$) and acyclic ligands 14 ($2.478(2) \AA$) , 15 ($2.471(2) \AA$), the trend observed for $\mathrm{Ru}-\mathrm{Cl}$ is longer for $\mathrm{Cp}<\mathrm{Cp}^{*}<\boldsymbol{\eta}^{3}-\mathrm{C}_{5} \mathrm{H}_{7}$.

As expected, Ru-P bond lengths in 3 and 4 decrease. by approximately $0.02 \AA$ and $0.026 \AA$ respectively, upon replacement of the P -bound H atom by phenyl groups. The $\mathrm{Ru}-\mathrm{PHPh}_{2}$ bond length for 3, 4 and 6 is significantly shorter (average $2.281 \AA$) than the corresponding distances in trans-RuCl $\left(\mathrm{PHPH}_{2}\right)_{4}$ (average $2.3585 \AA$) [24], 17 (2.3083(6) A) and 18 (2.2973(9) A) [2].

The $\mathrm{Ru}-\mathrm{PPh}_{3}$ bond length in 3 and 4 (average $2.3055 A$) is also shorter than those in 1 (average $2.336 \AA$) [21], 17 ($2.3565(6) \AA$) and $18(2.3403(9) \AA$) [2], refiecting the lower sleric requirement of the mixed phosphine compounds 3 and 4 .

Table 5
Atom positional parameters for compound 6

Atom	$\boldsymbol{\pi}$	y	z	$U_{\text {eq }}$	Oce
Ru(1)	$0.40922(2)$	$0.63099(2)$	$0.18934(2)$	0.0406	1.0000
Cli)	0.26457(6)	$0.69675(8)$	$0.23518(6)$	0.0579	$1.0000)$
P(1)	$0.4908 f(6)$	$0.76867(7)$	$0.24420(5)$	0.0441	1.0000
P(2)	$0.42570(7)$	$0.54431(8)$	$0.30515(6)$	0.0474	1.0000
C(1)	0.4976 (3)	$0.5986(4)$	$0.0970(2)$	0.0570	1.0000
C(2)	0.4542(3)	$0.5064(3)$	$0.1158(2)$	0.0515	1.0000
C(3)	0.3575 (3)	$0.5201(4)$	$0.0985(3)$	0.0614	1.0000
C(4)	$0.3450(4)$	$0.6209(5)$	0.0672(2)	0.0680	1.0000
C(5)	0.4297(4)	$0.6696(4)$	$0.0669(2)$	0.06660	1.0000
C(6)	$0.6023(5)$	0.613 (1)	$0.0976(5)$	0.0985	1.0000
C(7)	$0.5051(8)$	$0.4072(6)$	$0.1397(4)$	0.0932	1.0000
C(8)	0.2841 (9)	$0.437(1)$	$0.1051(7)$	0.1100	1.0000
C(9)	0.25011	r.666t2)	0.0389 (7)	0.1249	1.0000
C(10)	0.447(1)	$0.7736(6)$	0.0303(5)	0.1144	1.10\%00
C(11)	$0.4631(2)$	$0.8987(3)$	$0.2058(2)$	0.0478	1.6 ¢\%O
C(12)	$0.5341(3)$	$0.9697(4)$	$0.1979(3)$	0.0744	1.14600
C(13)	0.5139(4)	1.0677(4)	$0.1680(4)$	0.0881	1.0000
C(14)	0.4237(4)	1.0954(4)	$0.1461(3)$	0.0812	1.0000
C(15)	$0.3534(4)$	1.0264(4)	$0.1537(3)$	0.0740	1.0000
C(16)	$0.3725(3)$	0.9281 (3)	0.1824 (3)	0.0613	1.0060
C(17)	$0.5020(3)$	$0.7924(3)$	$0.3489(2)$	0.0499	1.0000
$\mathrm{C}(18)$	$0.5864(3)$	$0.7816(4)$	$0.3929(3)$	0.0675	1.0000
C(19)	0.5926(5)	0.7942(5)	$0.4735(3)$	0.0854	1.0000
C(20)	$0.5165(5)$	$0.8215(5)$	0.5092(3)	0.0927	1.0000
C(2)	0.4322(5)	$0.8321(5)$	$0.4661(3)$	0.0885	1.0900
C(22)	$0.4256(4)$	0.8162(4)	0.3874 (3)	0.0693	1.0000
C(29)	$0.5407(3)$	$0.5038(3)$	$0.3490(2)$	0.0492	1.001000
C(3)	$0.6184(3)$	$0.537043)$	$0.3155(3)$	0.0575	1.0000
C(3)	$0.7070(3)$	0.5195(4)	$0.3520(3)$	0.0729	1.0000
C(32)	$0.7177(4)$	0.4699(4)	0.4223(3)	0.0783	1.0006
C(33)	0.6412(4)	0.4339(4)	0.4556(3)	0.0749	1.0000
C(34)	0.5527(3)	$0.4504(4)$	$0.4191(2)$	0.0643	1.0000
C(35)	0.3506(3)	0.4320(3)	0.3159(2)	0.0599	1.0000
C(36)	0.2589 (4)	$0.4510(5)$	$0.3290(3)$	0.0838	1.0000
C(37)	$0.1957(4)$	$0.3694(7)$	$0.3315(4)$	0.1014	1.0000
C(38)	0.225066)	0.2699(6)	$0.3204(4)$	0.1215	1.0000
C(39)	0.3143 (6)	$0.2491(5)$	$0.3086(4)$	0.0901	1.0000
C(40)	0.3781(4)	$0.3306(4)$	0.3062(3)	0.0738	1.0000

Table 6
Atom positional parameters for compound 7

Atom	x	$\underline{\square}$	z	$U_{\text {eq }}$	Occ
Ru(i)	0.012278)	$0.2 / 448(7)$	0.24920(5)	0.0227	1.0090
CXI)	$0.2125(3)$	0.4273(2)	$0.2191(2)$	0.0439	1.0000
C(1)	-0.2466(9)	0.388(1)	$0.2064(6)$	0.0263	1.0000
C(2)	-0.2619(9)	$0.2910(9)$	$0.3050(7)$	0.0242	1.0000
C(3)	-0.247699	0.378 (1)	0.4008(7)	0.0272	1.5000
C(4)	-0.2045(0)	0.5153(9)	$0.3578(7)$	0.0260	1.0000
C(5)	-0.2019(9)	$0.5199(9)$	$0.2361(7)$	0.0221	1.0000
C(6)	-0.279(1)	$0.357(1)$	0.0946(7)	0.0472	1.0000
C(7)	-0.331(1)	$0.15311)$	$0.3149(8)$	0.0535	1.0000
C(8)	-0.232(1)	$0.335(i)$	0.5267(7)	0.0480	1.0000
C(9)	-0.185(1)	0.643(1)	0.4270 (8)	0.0194	1.0000
C(10)	-0.175(1)	$0.654(1)$	$0.1607(7)$	0.0484	1.0000
C(1)	$0.228(3)$	$0.0864(9)$	$0.3005(6)$	0.0292	1.0000
C(12)	$0.094(1)$	0.027(1)	$0.3171(7)$	0.0357	1.0010
C(13)	0.145(1)	-0.087(1)	$0.2040(8)$	0.0383	1.0000
C(14)	$0.112(1)$	0.049 (1)	$0.1213(7)$	0.0319	1.0000
C(15)	0.245 (1)	$0.1063(9)$	0.101517)	0.0387	1.0000
C(16)	$0.3598(9)$	$0.0103(9)$	$0.1751(7)$	0.0279	1.0000
C(17)	$0.348(1)$	-0.1635(9)	$0.1666(7)$	0.0404	1.0000

Table 7
Selected bond angles (deg) for 3, 4 and 6

	3	4	6
Cl(1)-Ru(1)-P(1)	89.27(5)	93.13 (8)	$91.22(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	88.43(5)	84.25i8)	84.70(4)
P(1)-Ru(1)-P(2)	92.)3(5)	$91.3348)$	$90.68(4)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	96 6(3)	119.73)	151.6(1)
P(1)-Ru(1)-C(1)	113.93)	$96.7(2)$	97.7(1)
P(2)-Ru(1)-C(1)	153.233	154.1(3)	121.8(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	$95.043)$	89.6(3)	97.8(1)
P(1)-Ru(1)-C(2)	152.043)	121.063)	$129.8(1)$
$\mathbf{P (2) - R ı (1) - C (2) ~}$	$115.3(3)$	147.4(3)	97.8 (1)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	38.2(3)	36.43)	37.4(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	125.5(3)	93.3 (3)	102.2(1)
$\mathbf{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	144.9(3)	158.0(3)	157.9(1)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	$93.2(2)$	$110.2(3)$	107.8(1)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	62.5(3)	$62.103)$	62.5 (1)
C(2) $\mathrm{Ru}(1) \mathrm{C}(3)$	36.8(3)	38.1(3)	37.6 (2)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(4)$	156.7(2)	128.13)	$91.9(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(4)$	108.0(2)	$138.5(3)$	126.12 (2)
P(2)-Ru(1)-C(4)	105.8(2)	$96.683)$	143.1(2)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(4)$	62.5(3)	$61.643)$	61.1(2)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(4)$	$62.4(3)$	62.8(4)	61.8(2)
$\mathrm{C}(3)-\mathrm{Ru}(\mathrm{i})-\mathrm{C}(4)$	37.5(3)	37.7(3)	37.3(2)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(5)$	128.7(3)	$152.5(2)$	115.2(2)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(5)$	93.8(2)	103.9(3)	96.2 (1)
$P(2)-\mathrm{Ru}(1)-\mathrm{C}(5)$	142.4(3)	116.2(3)	158.7(1)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(5)$	$36.7(3)$	37.9(3)	37.3(2)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(5)$	62.2(3)	63.2(3)	62.4(2)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{C}(5)$	$62.1(3)$	63.3(3)	$62.3(2)$
C(4)-Ru(1)-C(5)	37.4(3)	37.1(3)	36.1(2)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$117.2(2)$	116.4(3)	118.3(1)
$\mathrm{Ru}(1)-\mathrm{P}(\mathrm{i})-\mathrm{C}(17)$	$112.5(2)$	115.1(3)	123.2(1)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(17)$	102.7(3)	102.6(4)	101.5(2)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(23)$	117.8(2)	$120.8(3)$	
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(23)$	$110.8(3)$	98.044)	
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{C}(23)$	103.8(3)	100.9(4)	
$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(29)$	118.2(2)	122.2(3)	120.9(1)
$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(35)$	$119.9(2)$	118.8 (3)	117.6(1)
$\mathrm{C}(29)-\mathrm{P}(2)-\mathrm{C}(35)$	102.4(3)	101.3(4)	104.9(2)
$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	70.7(4)	71.26)	71.5(2)
$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	71.6(4)	69.34)	72,9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	107.1(7)	109.5(9)	109.044)
Ru(1)-C(2)-C(1)	71.1(4)	72.415)	71.1(2)
$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	72.0(4)	70.2(5)	71.7(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.0(8)	107.4(9)	107.6(4)
$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	71.2(4)	71.655	70.6(2)
Ru(1)-C(3)-C(4)	70.5(4)	70.95)	72.3 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.347)	1\%6.78)	106.5(4)
$\mathrm{Ru}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	72.0(4)	71.4(5)	70.4(2)
$\mathrm{Ru}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$71.8(4)$	71.20)	71.7(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.5(7)$	109.8(9)	109.8(4)
Ru(1)-C(S)-C(1)	71.74)	72.8(5)	$69 \mathrm{MP)}$
Ru(1)-C(5)-C(4)	70.8(4)	$71.7(5)$	$72.1(3)$
C(1)-C(5)-C(4)	109.2(7)	106.518)	$107.0(4)$
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	119.3(5)	120.4(7)	119.93)
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$122.4(5)$	121.1(7)	121.5(3)

The bond parameters ($\mathrm{Ru}-\mathrm{C}(1-5)$ average) for coordinated Cp_{p} (3 ($2.195 \AA$)) or Cp^{*} (4 ($2.222 \AA$), 6 ($2.196 \AA$) do not differ much from published data: 1
 (2.224 A) [26], $\mathrm{CpRu}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (20) (2.209 A) [4], $\left[\mathrm{Cp}{ }^{*} \operatorname{Ru}(\mathrm{NBD})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{BF}_{\mathrm{s}}$ (21) (2.205 \AA) [18], $\mathrm{CP}{ }^{*} \mathrm{Ru}(\mathrm{COD}) \mathrm{H}(22)(2.231 \AA)$ [27], [$\left.\mathrm{Cp}{ }^{\circ} \mathrm{Ru}(\mathrm{py}) \mathrm{Cl}\right]_{2} \mathrm{PF}_{6}$ (23) (2.166 \AA) [28], [Cp $\left.{ }^{*} \operatorname{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+}(24)(2.174 \AA$) [29].

The P-C distances in the phosphine compounds 3,4 and 6 are similar to those in analogous compounds [26]. The disubstituted diphenylphosphine compound 6 observed the shortest C-C ring bond distance for C26-C27 (1.346(8)A).

The P-H distances for 3,4 and 6 are not significantly different (1.296(1) $\AA, 1.32(8) \AA$ and $1.31(3) \AA$, $1.31(3) \AA$ respectively). The non-bonding distances $\mathrm{H}(2) \cdots \mathrm{Cl}(1)$ are also very similar (3.31. 3.02, 3.15 \AA) for 3, 4 and 6. Interestingly, $\mathrm{H}(1) \ldots \mathrm{CM}$ (1) in 6 is significantly longer ($4.66 \AA$). These facts, suggese to us that the higher reactivity of the disubstituted compound 6. which has been atributed to the presence of two PH functions, is due to the labile P-H bond but not necessarily because of formation of HCl , which would afford phosphide species that have never been observed.

2.2.2. The diene complex 7

This crystallizes in the triclinic form. The Ru(II) complex has a distorted octahedral geometry with the Cp * ligand occupying three sites, a chlorine arom and two olefinic bonds from the NBD ligand. Distances relating to the coordination of Ru with the $\mathbf{C p}$ ' ring are within the nomnal range. $\mathrm{Ru}-\mathrm{C}(1-5)$ average $2.221(7) \mathrm{A}$ (vide supra). However, a significant variation is observed for 7 in $\mathrm{Ru}-\mathrm{C} 2(2.154(7) \AA$) and $\mathrm{Ru}-\mathrm{Cl}$

Table 8
Selected bond disunces (\mathbf{A}) for $\mathbf{3 . 4} 4$ and 6

	3	4	6
Ru(1)-CK1)	2.474(2)	$2.462(2)$	24542(9)
$\mathrm{Rua}(1)-\mathrm{P}(1)$	2.302(2)	2.30912)	$2.282(1)$
Ru() - $\mathrm{P}(\underline{2})$	2.28 $2(2)$	$2.283(3)$	2.977(1)
$\mathrm{Ru}(1)-\mathrm{C}(\mathrm{i})$	$2.198(7)$	2.2499)	2.1744)
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.193(6)$	$2.234(8)$	$2.180(3)$
Rur(1)-C(3)	$2.204(7)$	$2.21619)$	$2.194(4)$
$\mathrm{Ru}(1)-\mathrm{C}(4)$	2.1847)	2.2109)	$2218(4)$
$\mathrm{Ru}(1)-\mathrm{C}(5)$	$2.197(7)$	2.2039)	$2.213(4)$
P(1)-C(11)	$1.841(6)$	1.84893)	1.830(4)
P(1)-C(17)	$1.837(6)$	1.86(1)	$1.820(4)$
P(1)-C(23)	1.8396)	1.842(8)	
P (2)-C(29)	1.828(6)	1.813(9)	1.833(4)
$\mathrm{P}(2)-\mathrm{C}(35)$	1.820(6)	$1.833(8)$	1.827(4)
C(1)-C(2)	1.471)	1.4041)	$1.395(6)$
C(1)-C(5)	[.38(1)	1.45(1)	1.40246)
C(2) $\mathrm{C}(3)$	1.39(1)	1.45(1)	1.410(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.41(1)	1.43(1)	$1.410(7)$
C(4)-C(5)	1.41(1)	1.40(1)	$1.375(7)$
$\mathrm{P}(2)-\mathrm{H}(2)$	1.296(1)	1.32(8)	1.31(3)
$\mathrm{P}(1)-\mathrm{H}(1)$			1.3113)
Ru-Cp ${ }^{\text {- }}$	1.8+1	1.861	1.845

(2.252(7) \hat{A}) which gives evidence of the deformation of the ring. Compound 2 L , with a more symmerric $\mathrm{Ru}-\mathrm{C}$ ($\mathrm{Cl}-\mathrm{C} 4$) interaction, showed similar behavior for $\mathrm{Ru}-$ C5 (2.148(8) \AA) [18] as did 23, which showed two short bond lengths for $\mathrm{Ru}-\mathrm{C} 3$ (2.155(4) \AA) and Ru-C4 (2.149(5) Å) [28].

The $\mathrm{Ru}-\mathrm{Cl}$ distance has a value of $2.443(2) \AA$; this is similar to those of the analogous compounds $\mathrm{Ru}(\mathrm{NBD})(\mathrm{dppb}) \mathrm{Cl}_{2}(25)(2.4371(10), 2.4374(9) \mathrm{A})$ [30] and $\left[\mathrm{Ru}(\mathrm{NBD})(\mathrm{CO}) \mathrm{Cl}_{3}\right]^{-1}$ (26) (2.445(2), 2.422(2) $2.429(2) A$) [31] which are longer than the amine derivatives $\mathrm{Ru}\left(\mathrm{NBD}_{\mathrm{A}} \mathrm{L}_{2} \mathrm{Cl}_{2}\left(\mathrm{~L}=\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right.\right.$ (27), 2.4263(4), 2.4200(4) \AA. [32]; $\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (28) 2.415(2), 2.407(1) \AA [33]).

The averuge bond distance of $7(2.18 \AA)$ between $R u$ and the olefinic carbons of norbomadiene is similar to $27(2.185 \AA), 28(2.179 \AA)[32], \operatorname{Ru}(N B D)(L-h i s) C I$ (29) $(2.170 \AA$) [34], and slightly longer than $\left[\mathrm{Ru}(\mathrm{NBD})\left(\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)\right]_{2}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CCCl}_{3}\right)_{2} \quad$ (30) (2.164 \AA) [35], $\mathrm{Ru}(\mathrm{NBD})\left[\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-2,6\right] \mathrm{X}(\mathrm{X}$ $\left.=\mathrm{Cl}(31)(2.153 \AA) ; \mathrm{X}=\mathrm{OSO}_{2} \mathrm{CF}_{3}(32)(2.166 \AA)[36]\right)$ and $\operatorname{Ru}(N B D)(L-p h e)(33)(2.163 A)$ [37]. These structures showed the lowest distortion in the NBD-Ru interaction, whereas $19(2.235 \AA), 21(2.201 \AA), 25$ $(2.284 \AA) .26(2.220 \AA), \mathrm{Ru}(\mathrm{NBD})($ diimine $)\left(\mathrm{CH}_{3}\right)(34)$ (2.201 A) [38] and [Ru(NBD)(aminoacid)] (35) [39] are less symmetrically bonded.

3. Experimental details

3.1. General procedures

All reactions were carried out by use of standard procedures for maniputaion of air-sensitive materials, either under dry nitrogen using Schlenk tubes, syringe and/or high vacuum techniques. Solvents were dried, freshly distilled under dinitrogen, and degassed prior to use.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Jeol GSX- 270 spectrometer at $270 \mathrm{MHz}, 67.80 \mathrm{MHz}$ and 109.25 MHz respectively, with TMS and $\mathrm{H}_{3} \mathrm{PO}_{4}$ (85%) as internal and external references, in benzene- d_{6} or CDCl_{3} at ambient temperature. Mass spectra were obtained with Finnigan MAT 95 or Hewlett Packard 5989A instruments. Carbon and hydrogen analyses were carried out by Oneida Research Services Inc., Whitesboro, NY.

The riphenyl- and diphenylphosphines were used as received from Aldrich. The following metal complexes were made by published methods: 1 [40], $5[8],(7,8,9)$ [13], 10 [10], 11 [41].

Complex 2 was syathesized by reduction of 11. A mixture of $11(400 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.2 \mathrm{~g}$, 0.76 mmol) in THF (25 ml) was stired at room temperature. Addition of zinc powder (0.5 g) showed that par-
tially soluble 11 in THF dissolves completely without color change in the brick-red solution after 1 h . The solution was filtered and the volume reduced to 5 ml : addition of hexane gave a pale yellow precipitate. Recrystallization with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 2$) afforded a microcrystalline orange-yellow powder in 85% (475 ung. 0.60 mmol).

3.2. Preparation of $\mathrm{CPRu}\left(\mathrm{PHPh}_{2}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(3)$

A stired suspension of compound 1 (480 mg , 0.66 mmol) in toluene (30 ml) was treated with PHPh_{2} ($0.23 \mathrm{ml}, 1.32 \mathrm{mmol}$) for 2 h at $60^{\circ} \mathrm{C}$ under dinitrogen atmosphere. The resulting solution was concentrated in vacuo and the residue of the reaction was purified by column chromatography over silica, firstly with hexane and then with diethyl ether:hexane ($1: 1$) as eluents. PHPh_{2} and PPh_{3} were eluted with the former solvent and compound 3 with the mixed solvents and isolated as an orange-red solid after concentration of the solution in 81.4% ($350 \mathrm{mg}, 0.54 \mathrm{mmol}$), m.p. $175-205^{\circ} \mathrm{C}$ without decomposition. Elemental Anal. Found: C, 64.07; H, 4.68. $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{ClP}_{2} \mathrm{Ru}$. Calc.: $\mathrm{C}, 64.67 ; \mathrm{H}, 4.77 \%$. MS (70 eV) m / z (rel. int. (\%)): 650 (3) $\left[\mathrm{M}^{+}\right], 536(1)$, 464(3), 427(8), 352(5), 262 (100), 183(75), 186(30). 108(91).

3.3. Preparation of $C p^{{ }^{2}} \mathrm{Ru}\left(P H P h_{2}\right)\left(P P h_{3}\right) \mathrm{Cl}(4)$

$\mathrm{PHPh}_{2}(11.5 \mathrm{ml}, 0.64 \mathrm{mmol})$ was added at room temperature to a suspension of $2(424 \mathrm{mg}, 0.53 \mathrm{mmol})$ in toluene (20 ml) and the mixture was stirred for 30 min . The solvent was evaporated under reduced pressure to leave an orange oil, which was purified by chromatography on silica with diethyl ether:hexane (3:7) to afford compound 4 (which is contaminated with 6 in a $20: 1$ ratio according to ${ }^{\prime} \mathrm{H}$ NMR) in approximately 56% ($215 \mathrm{mg}, 0.3 \mathrm{mmol}$). Careful crystal separation by hand allowed characterization of 4 , m.p. $185-190^{\circ} \mathrm{C}$. MS m / z (rel. int. (\%)). LR/FAB ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-3 \mathrm{NBA}\right) 720(48)$ $\left[\mathrm{M}^{+}\right], 685(46), 534(92), 499(100), 458(87), 422(74)$. $271(16), 262(21), 236(14)$.

3.4. Preparations of $\mathrm{CP}^{*} \mathrm{Ru}\left(\mathrm{PHPh}_{2}\right)_{2} \mathrm{Cl}$ (6)

3.4.I. From compound 8

A stirred suspension of 8 ($230 \mathrm{mg}, 0.6 \mathrm{mmol}$) in 30 ml of cyclohexane was treated with $\mathrm{PHPh}_{2}(0.23 \mathrm{ml}$. 1.32 mmol). After 1 h the starting material was not observed in solution. Alter stiring for 16 h at room temperature the cyclohexane was removed under vacsum. The golden yellow powder was recrystallized twice from toluene-hexane to give pure orange-red crystals of 6 in 90% yield ($350 \mathrm{mg}, 0.54 \mathrm{mmol}$) m.p. $190-200^{\circ} \mathrm{C}$. Elemental Anal. Found: C, $63.02 ; \mathrm{H}, 5.72$; $\mathrm{Cl}, 5.20 . \mathrm{C}_{34} \mathrm{H}_{37} \mathrm{ClP}_{2} \mathrm{Ru}$. Calc.: $\mathrm{C}, 63.40 ; \mathrm{H}, 5.75 ; \mathrm{Cl}$,
5.52\%. MS (70 eV) m/z (rel. int. (\%)): 644(5) [M ${ }^{+}$], $543(5), 470(4), 458(i 1), 422(11), 236(4), 186(60)$, 108(100).

3.4.2. From compound 7

Complex 6 was prepared in a similar manner to above, but using compound 7 ($150 \mathrm{mg}, 0.41 \mathrm{mmol}$) in 20 ml of cyclohexane and $\mathrm{PHPh}_{2}(0.17 \mathrm{ml}, 0.9 \mathrm{mmol})$. The unreacted 7 was separated by cinromatography on silica with diethyl ether-hexane after the first orange-red fraction of 6 which was eluted with diellyl ether:hexane (3:7). Recrystallization of 6 in hexane at $-5^{\circ} \mathrm{C}$ gave 1.5% yield ($4 \mathrm{mg}, 6.2 \times 10^{-3} \mathrm{mmol}$) and recrystallization of 7 in dichloromethane:hexane (1:2) at room temperature gave $134 \mathrm{mg}(0.37 \mathrm{mmol})$ of recovered starting material.

3.4.3. From compound 9

Compound 9 ($340 \mathrm{mg}, 0.31 \mathrm{mmol}$) in THF (20 ml) was treated with PHPh_{2} ($0.5 \mathrm{ml}, 2.87 \mathrm{mmol}$) and the
resulting mixture was stirred at room temperature for 2 h . The solution is filtered from a black thin powder and the THF was evaporated. The golden yellow solid was recrystallized three times with toluene:hexane ($1: 1$) at room temperature to give orange-red crysiain in 74.5% yield ($600 \mathrm{mg}, 0.93 \mathrm{mmol}$).

3.4.4. From compound 10
 Compound 10 ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) in EiOH (15 ml)

 gave a brown suspension which was treated with two equivalents of PHPh_{2} ($0.34 \mathrm{ml}, 1.92 \mathrm{mmol}$) at room temperature, changing drastically from a drown to a yellow-green solution. After stiming in the reaction mixture was filtered, giving a black powder and a wine-red solution. The EtOH was removed and the crude product was dissolved in chloroform, then filtered and the volume of solvent reduced. Addition of hexane gave a yellow powder (385 mg) which is a mixture of 6 , Cporu(PHPh,)(POEtPh, Cl and $\mathrm{Cp}{ }^{\wedge} \mathrm{Ru}\left(\mathrm{POEIPh}_{2}\right), \mathrm{Cl}$, in an approximate ratio $60: 35: 5$Table 9
Crystaliographic data collection and structure refinements for compounds 3.4.6 and 7

	$\mathrm{C}_{55} \mathrm{H}_{31} \mathrm{P}_{2} \mathrm{ClRu}$ (3)	$\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{ClP}_{2} \mathrm{Rus}(4)$	$\mathrm{C}_{14} \mathrm{H}_{37} \mathrm{P}_{2} \mathrm{ClRu}(6)$	$\mathrm{C}_{1} ; \mathrm{H}_{3} 3 \mathrm{RuCl}$ (7)	
Fw	650.1	720.23	644.13	363.89	
Space group	$\mathrm{P}_{2} / \mathrm{c}$	$P 2_{1} / n$	$P 2,1 a$	P $\overline{\mathrm{I}}$	
$a(A)$	11.844(1)	10.653(1)	14.470(2)	8.467(2)	
$b(\mathbb{A})$	14.512(1)	17.988(4)	12.870(2)	$8.51003)$	
$c(A)$	$17.523(1)$	18.650(1)	17.207(1)	11.939(-1)	
α (deg)	90.0	90.0	90.0	89.10(4)	
β (deg)	95.589	105.0	95.48(9)	71.74(2)	
γ (deg)	90.0	90.0	90.0	60.74(3)	
$V\left(\dot{A}^{3}\right)$	$3019.3(1)$	3452.6 (1.1)	31901)	7 H (1)	
Z	4	4	4	2	
\boldsymbol{F} (00R)	1.328	1488	1328	772	
Diffractometer	CAD4 Enraf-Nomius	CAD4 Enraf-Nonius	CAD4 Enrat-Nonius	CAL4 Enraf-Nonius	
Radiation	Mo Ka $(\lambda=0.71069 \AA 8)$	MoKa ($\lambda=0.71069 \mathrm{~A})$	MoKa ($\lambda=0.71069 \mathrm{~A})$	MoKa $(\lambda=0.71069 \mathrm{~A})$	
Linear abs coeff (cm^{-1})	7.29	6.11	6.36	12.07	
$\rho($ cate $)\left(\mathrm{gcm}^{-3}\right)$	1.44	1.39	1.34	1.63	
Scan type	($0-2 \theta$	$\omega-2 \theta$	$\omega-29$	\%-2*	
Scan runge (deg)	$0.80+0.34 \operatorname{can} \theta$	$0.80+0.34 \tan \theta$	$0.50+0.6 \tan \theta$	$0.8+0.345 \mathrm{izn} \theta$	
θ limits (deg)	$1-25$	1-25	1-25	2-18	
Measurement temperature	room temperature	room temperiture	mom temperamure	trom temperture	
Octants collected	-10, 10, 0, 14:0, 15	-12, 12;0.21;0,27	0, 15:0,13:-18. 18	-6.7:-7.7:0.10	
No. of data collected	4880	6480	4312	1097	
No of unique data collected	2332	6055	3902	1026	
No of unique data used	$2063\left(F_{\mathrm{u}}\right)^{2}>3 \mathrm{~m}\left(F_{0}\right)^{2}$	$2476\left(F_{0}\right)^{2}>30\left(F_{n}\right)^{2}$	$3582\left(F_{0}\right)^{\prime}>36\left(F_{0}\right)^{\prime}$	$986\left(F_{*}\right)^{2}>3 \pi\left(F_{*}\right)^{2}$	
R (int)	4.56	4.12	1.11	0.01	
Decay (\%)	<1	<1	<1	<1	
Absorption cortection	DHFASS $(\min =0.86, \max =1.17)$	$(\min =0.90$, max $=1.06$)	LATNBS $(\min =0.86, \max =1.07)$	$\begin{aligned} & \text { Ditinas } \\ & (\min =0.8 \cdot \max =\mathbf{t} .08) \end{aligned}$	
$\boldsymbol{R}=\Sigma\| \| F_{0}\left\|-\left\|F_{c} \\| / \Sigma\right\|_{\text {w }}\right\|$	0.029	0.240	0.036	00\%	
$\sum_{w} w_{F_{i}^{2}}^{2} \sum^{1 / 2} w^{1 / 2}\left\|\left(F_{6}\left\|-\left\|F_{6}\right\|\right)^{2}\right\rangle\right.$	$0.031, n=1.0$	$0.045 . \mathfrak{w}=1.0$	0.037. $u=1.0$	0.030, $u=1.0$	
Goodness of fit s	3.43	1.58	6.39	4.13	
No. of variabies	353	+101	351	173	
Jomin (e \AA^{-3})	-2.8	-0.315	-0.43	-0.28	
$\underline{J} \rho \max \left(\mathrm{e} \dot{A}^{-3}\right)$	0.26	0.625	0.42	0.520	

according to ${ }^{31} \mathrm{P}$ NMR spectroscopy. Atempts to isolate pure samples were not successful.

3.4.5. From compound 11

To a suspensien of $11(1.32 \mathrm{mg}, 2.32 \mathrm{mmol})$ in THF (70 ml) at room temperature was added three equivalents of $\mathrm{PHPh}_{2}(1.21 \mathrm{ml}, 6.9 \mathrm{mmol})$. The color of the solution changed from wine-red to red-yellow. The mixture was heated under reflux for 4 h . The solution was filtered and the solvent was removed in vacuo and the residue was dissolved in toluene. Chromatography on silica with hexane afforded PHPh_{2} and PPh_{3}; a second orange-red band was eluted with diethyl ether:hexane ($3: 7$) giving 6 in 48% yield (715 mg , 1.11 mmol). Two more bands were eluted, giving hydrolysis products.

3.4.6. From compound 2

Compound 2 ($150 \mathrm{mg}, 0.189 \mathrm{mmol}$) in 30 ml of THF was treated with $\mathrm{PHPh}_{2}(0.083 \mathrm{ml}, 0.48 \mathrm{mmol})$ and the resulting mixture was stirred under reflux for 2.5 h . The THF was evaporated and a yellow oily solid was purified by chromatography on silica with hexane eliminating excess of PHPh_{2} : a second yellow band was eluted with diethyl ether:hexane (1:9). After concentration of the solution, a yellow solid precipitates. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane gave 6 in 67% yie ${ }^{1}, 1(100 \mathrm{mg}$, 139 mmol).

3.5. Crystal structure determinations

Details of crystal data and intensity collection parameters are given in Table 9. Unit ceil dimensions with estimated standard deviations were obtained from least squares refinement of the setting angles of 25 wellcentered reflections. Two standard reflections were monitored periodically; they showed no change during data collection. Corrections were made for Lorentz and polarization effects. The structures were solved by direct methods using CRystals and refined by full marrix least squares cycles. Anisotropic temperature factors were introduced for all non-hydrogen atoms. The hydrogen atoms were found on difference electron density maps and refimed isotropically.

Acknowledgements

We wish to thank Professor M. Jesús Rosales-Hoz (CINVESTAV, México) and Professor Francis Robert (Université Pierre and Marie Curie, France) for X-ray diffraction studics, and CONACYT for financial support and a research studentship for R.T.L.

References

[1] M.A. Paz-Sandoval. P. Juárez-Saavedra. N. Zúñiga-Villarreal, M.J. Rosiles Hoz. P. Joseph-Nathan, R.D. Emst and A.M. Arif. Organomeralics. I/ (1992) 2467.
[2] M.A. Paz-Sandoval, O. Pérez-Camacho, R.D. Emst and A.M. Arif. unpublished results.
[3] S.G. Davies. J.P. MeNally and A.J. Smailridge, Adr. OrganometaI. Chiem. 30 (1990) 1.
[4] M.E. Cucullu, L. Luo, S.P. Nolan, P.J. Fagan, N.L. Jones and J.C. Calabrese. Orgunomelallics, J4 (1995) 289.
[5] (a) M.A. Bennett. M.I. Bruce and T.W. Matheson, in G.W. Wilkinson, F.G.A. Stone and E.W. Abel (eds.). Comprehemsire Organometallic Chemistry, Vol. 4, Pergamon, Oxford. 1982. Chapter 32.3, p. 783. (b) M.A. Bennetr, K. Kahn and E. Wenger. in E.W. Abel. F.G.A. Stone and G. Wilkinson (eds.). Comprehensice Organometallic Chemistry'I. Vol. 7, Pergamon. Oxford, Chipter 8. p. 490.
[6] L. Luo, S.P. Nolan and P.J. Fagan, Organometalfics, 12 (1993) 4305.
[7] T. Wijczewski. J. Organomer. Chem. 224 (1982) CI.
[8] M.O. Albers. D.J. Robinson. A. Shaver and E. Singleton. Orgonometallics. S(1986) 2199.
[ध] M. Estebran, A. Pequerul, D. Carmona, F.J. Lahoz, A. Martín and L.A. Oro, J. Organomer. Chem. $20+$ (1991) 421.
[10] N. Oshima. H. Suzuki and Y. Moro-Oka, Chem. Left., (1984) 1161.
[II] T.D. Tilley, R.H. Grubbs and J.E. Bercaw, Organometalics. .3 (1984) 274.
[12] F.M. Conroy-Lewis and S.I. Simpson, A. Organomet. Chem., 322 (1987) 221.
[13] P.J. Fagan, W.S. Mahoney, J.C. Calabrese and I.D. Williams, Organometallices, 9 (1990) I843.
[14] S.L. Mukerjee, S.P. Nolan, C.D. Hoff and R. López de la Vega, horg. Chem., 27 (1988) 81.
[15] Y. Wakatsuki, H. Yamazaki, T. Kobayushi and Y. Sugawara. Organometallics, 6 (1987) 1191.
[16] H. Lehmkuhl, M. Bellenbium. J. Grundke, H. Mauermann and C. Krüger, Chem. Ber.. 121 (1988) 1719.
[17] M.S. Chinn and D.M. Heinekey, J. Am. Chem. Soc., 112 (1990) 5166.
[18] H. Suzuki. T. K.akigano, H. Fukui, M. Tanaka and Y. Moro-Oki, J. Organomet. Chem., 473 (1994) 295.
[19] (a) J. Okuda. in W.A. Hermann (ed.). Topics in Current Chemistry, Springer, Berlin, Germany, 1992, p. 97. (b) C.G. Janiak and H. Schumann, Adc. Organomet. Chem., 33 (1991) 291. (c) F.G. Bordwell and M.J. Bausch, J. Am. Chem. Soe:, 105 (1983) 6188.
\{20] R. Torres-Lubián and M.A. Paz-Sandoval, unpublished results.
[21] M.I. Bruce, F.S. Wong, B.W. Skelton and A.H. White. J. Chem. Soc. Dallon Trans., (1981) 1398.
[22] J.R. Blecke and D.J. Rauscher. Organometallics. 7 (1988) 2328.
[23] D. White and N.J. Coviltc. Add. Orgumomet. Chem. 36 (1994) 95.
[24] (a) E.B. McAslan. A.J. Blake and T.A. Stephenson, Acta Crystallogr. Sect. C: 45 (1989) 1811. (b) A.J. Blake. N.R. Champness, R.J. Forder, C.S. Frampton. C.A. Frost, G. Reid and R.H. Simpson. J. Chem. Soc. Dilton Trims., (1994) 3377.
[25] (a) E.R. Tiekink. Z Krisallogr., 198 (1992) 158. (b) M.L. Bruce, P. Hinterding and E.R.T. Tiekink, Z. Kristallogr.. 205 (1993) 287.
[26] R. Usón, L.A. Oro. M.A. Ciriano. M.M. Naval, M.C. Apreda. C. Foces-Foces, F.H. Cano and S. García-Blanco, J. Orgemomet. Chem. 256 (1983) 331 and references cited therein.
[27] H. Kölle, B.S. Kang, G. Kaabe and C: Krüger, J. Urganomet. Chem., 386 (1990) 261.
[28] B. Chaudret. F. Jalón. M. Penez-Mannque, F. Lahor. F.I.PIos and R. Sánchez-Delgado, Nen: J. Chem, If (1990) 331.
[29] C. Gemel, K. Merciter. R. Schmid and K. Kirchner. Organometallics, 55 (1996) 532.
[30] T.W. Dekleva, A.M. Joshi, IS. Thorbum, B.R. James, S.V. Evans and J. Trotter, Isr. I. Chem., 30 (I990) 343.
[31] R.O. Gould, L. Ruiz-Ramires, T.A. Srephenson and M.A. Thompson, J. Chem. Res., 254 (1978) 3301.
[32] C. Potwin, J.M. Manoli, G. Pannetier. R. Chevalier and N. Platzer, J. Organomet. Chem., 113 (1976) 273.
[33] J.M. Manoli, A.P. Gaughan, Jr. and J.A. Ibers, J. Organomet. Chem.. 72 (1974) 247.
[34] W.S. Sheldrick and R. Exner. hnorg. Chim. Acta. 195 (1992) I.
[35] M.O. Albers. D.C. Liles. E. Singleton and J.E. Stead. Acfa Crastallogr. Sect. C:. 42 (1986) I299.
[36] J.P. Sutter, S.L. Jarnes, P Steenwinkel. T. Karten, D.M. Grove. N. Veldman, W.J.J. Smeets, A.L. Spek and G. van Koren. Organometallics, I5 (1996) 941 .
[37] W.S. Sheldrick and R. Exner. Inorg. Chim. Acta. I66 (1989) 213.
[38] W. Rohde and H. tom Dieck, J. Organmmet. Chem., 385 (1990) 101.
[39] W.S. Sheldrick and R. Exner. J. Organonet. Chem.. 386 (1990) 375.
[40] F.L. Joslin, J.T. Mague and D.M. Roundhill, Orgonentefalfics, 10 (1991) 521 and references cited therein.
[41] T. Arliguie. C. Border, B. Clwidret. J. Devilhers and R. Poilblanc. Organometalics, 8 (19\%9) 1308.

[^0]: Corresponding author. E-mail: mpaz@mvax $1 . r e d, c i n v e s t a v . m x . ~$

[^1]:

